

University of Pretoria Yearbook 2016

Numerical thermoflow 781 (MSM 781)

Qualification	Postgraduate
Faculty	Faculty of Engineering, Built Environment and Information Technology
Module credits	16.00
Programmes	BEngHons Mechanical Engineering
	BScHons Applied Science Applied Science: Mechanics
Prerequisites	MSM 780 Numerical thermoflow 780
Contact time	21 contact hours per semester
Language of tuition	English
Academic organisation	Mechanical and Aeronautical En
Period of presentation	Semester 2

Module content

The Efficient Solvers: Background, muligrid theory and detailed description of the algorithm. Finite Volume method: Understand the governing equations, general form of the transport equations, Gauss's theorem and the finite volume discretisation. Iterative solution algorithm: Pressure-velocity coupling, types of grids, unsteady flows, multiple phases. Finite Volume Discretisation: Diffusion term, convection term and source term for steady flows. Convection-diffusion problems: Boundary conditions, higher order discretisation, accuracy / stability. Solution Algorithm for Pressure-Velocity coupling: SIMPLE, SIMPLER, SIMPLEC and PISO. Laminar, transitional and turbulent flow: Background and theory. Turbulence modelling and examples: Definition of turbulence, turbulence modelling approaches, turbulence models (zero-equation models, one equation, two equation, Reynolds Stress Model (RSM), Large Eddy Simulation, wall function approach), turbulence modelling guidelines. Recent CS developments: Current state of the art in turbulence modelling etc. Viscous boundary meshes: Background and objectives, internal and external flow, turbulence modelling considerations.

The information published here is subject to change and may be amended after the publication of this information. The **General Regulations (G Regulations)** apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the **General Rules** section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.